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1 Define the parameter vector θ and the obser-
vation vector for this problem.

The parameter vector is w =
[
w1 ... wd

]T ∈ Rd. The observation vector is

xi =
[
x1 ... xd

]T ∈ Rd, for i = 1, ..., n.

2 Find the probabilistic model for the observa-
tions given the parameters.

The logistic regression model is a standard approach for training a linear classi-
fier with a dataset {(xi, yi)}ni=1. Here, xi is a d-dimensional feature vector, and
yi ∈ {0, 1} is its label. The observations (xi, yi) for i = 1, 2, ..., n are assumed to
be independent and identically distributed (i.i.d). The logistic function models
the conditional probability:

p(y|x;w) =
e(w

Tx)y

1 + ewTx
, (1)

where w ∈ Rd is an unknown parameter vector. Utilizing the i.i.d assumption,
the joint probability model of the observations is expressed as:

p (X,y|w) =

n∏
i=1

e(w
Txi)yi

1 + ewTxi
, (2)

where X = [xT1 ,x
T
2 , ...,x

T
n ] denotes the collection of all feature vectors, and

y = [y1, y2, ..., yn]T denotes the collection of all instance labels. Consequently,
the log-likelihood function is given by:
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l(w) =

n∑
i=1

[
yi(w

Txi)− log(1 + ew
Txi)

]
, (3)

Note that l2-regularization [2] and l1-regularization [3] are common in LR.

3 Find the Cramer-Rao Lower Bound (CRLB)
for w

We use a method similar to [4] to compute the Fisher Information Matrix (FIM)

via FIM = −E
[
d2l(w)
dwwT

]
, where the second derivative of the log-likelihood func-

tion is given by:

∂2l(w)

∂wwT
=

n∑
i=1

ew
Txi

(1 + ewTxi)2
xix

T
i , (4)

Substituting (4) into the FIM equation yields:

FIM = nE

[
ew

Tx

(1 + ewTx)2
xxT

]
, (5)

Finding a closed-form expression for the FIM for arbitrary f(x) is chal-
lenging and is often approximated through empirical evaluation. To derive a
non-singular closed-form FIM, we assume x ∼ N(0, σ2I), resulting in:

FIM = nσ2
[
(α2 − α0)u1u

T
1 + α0I

]
, (6)

where u1 = w/ ‖ w ‖, αk = αk(σ ‖ w ‖) and

αk(a) = E
[

eaz

(1 + eaz)2
zk
]

=

∫ ∞
−∞

1√
2π

eaz−
1
2 z

2

(1 + eaz)2
zkdz, (7)

where z ∼ N (0, 1).
Next, we proceed to derive the Fisher Information Matrix (FIM) transforma-

tion outlined in Eq. (6). Let u1 = w
‖w‖ , c =‖ w ‖, and U =

[
u1 u2 . . . ud

]
,

where u2,u3, . . . ,ud can be arbitrarily chosen to satisfy UUT = I. We initiate
by multiplying UUT on both sides of the FIM in Eq. (5), resulting in:

FIM = nUE

[
ecu

T
1 x

(1 + ecu
T
1 x)2

UTxxTU

]
UT , (8)

Let z = UTx/σ, noting that z ∼ N (0, Id). Substituting UTx with σz and
uT1 x = σz1 into Eq. (8) yields:

FIM = nσ2UE
[

ecσz1

(1 + ecσz1)2
zzT

]
UT , (9)
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This expression can be succinctly denoted as:

FIM = nσ2UAUT , (10)

where A = E
[

ecσz1

(1+ecσz1 )2 zz
T
]
, V = E

[
ecσz1

(1+ecσz1 )2 z
]
, and α0 is as defined in Eq.

(7). Utilizing the independence among the zi’s, we can further simplify A and

V as A = diag
[
α2 α0 . . . α0

]
and V =

[
α1 0 . . . 0

]T
. Let ei be the

canonical vector with all zero entries except for 1 at the ith entry. Replacing
A = (α2 − α0)e1e

T
1 + α0I and V = e1α1 into Eq. (10), we obtain:

FIM = n
[
σ2U[(α2 − α0)e1e

T
1 + α0I]

]
UT , (11)

Substituting Ue1 = u1 into Eq. (11) yields Eq. (6):

CRLB = FIM−1 =
1

nσ2

[
(α2 − α0)u1u

T
1 + α0I

]−1
, (12)

The Sherman-Morrison formula is employed as follows:

Lemma 3.1 Consider A ∈ Rn×n as an invertible matrix, and let u, v ∈ Rn be
vectors. If uTA−1v 6= −1, then A + uvT is invertible, and the inverse is given
by

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (13)

This formula is utilized to determine the inverse of the Fisher Information
Matrix (FIM). Let A = α0I, u = (α2 − α0)u1, and v = u1. Substituting into
Eq. (13) results in:

CRLB = FIM−1 =
1

nσ2

(
1

α0
I +

α2−α0

α2
0

u1u
T
1

1 + α2−α0

α0
uT1 u1

)
, (14)

CRLB =
1

nσ2α0

[
I− α2 − α0

α2
u1u

T
1

]
, (15)

This Cramér-Rao Lower Bound (CRLB) is then employed to establish a
lower bound on the mean squared error of an unbiased estimation of w:

E(‖ ŵ−w ‖2) ≥ tr(CRLB) =

d∑
i=1

CRLBii, (16)

4 Derive the likelihood of ML estimation of w

Following (3), the likelihood of the ML estimation is given by

l(w) =

n∑
i=1

(
yi(w

Txi)− log(1 + ew
Txi)

)
, (17)
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We have the following optimization problem:

ŵMLE = arg max
w

l(w) = arg max
w

n∑
i=1

(
yi(w

Txi)− log(1 + ew
Txi)

)
, (18)

The gradient of the log-likelihood function is given by

∇wl(w) =

n∑
i=1

(
yi −

ew
Txi

1 + ewTxi

)
xi, (19)

5 Derive the iterative scaling iterations for esti-
mating w as well as the gradient descent ap-
proach for estimating w.

5.1 Iterative scaling iterations approach

5.1.1 Version 1

The iterative scaling approach used in likelihood maximization is a lower-bound
methodology. Each iteration involves the formulation of a simple lower bound
on the likelihood, followed by a transition to its maximum. Notably, iterative
scaling provides an additive lower bound concerning the parameters wk, allowing
for the flexibility to update either a singular parameter or all parameters in each
step [5].

Let s = maxi
∑
k |xik|. The foundation of iterative scaling relies on the

consideration of the following two bounds:

Lemma 5.1
− log(x) ≥ 1− x

x0
− log(x0), (20)

for any x0

Lemma 5.2

− exp(−
∑
k

qkwk) ≥ −
∑
k

qk exp(−wk)− (1−
∑
k

qk), (21)

for any qk > 0 satisfying
∑
k qk ≤ 1

The second lemma is derived through the application of Jensen’s inequality
to the function e−x:exp(−

∑
k qkwk) ≤

∑
k qk exp(−wk),

if
∑
k qk = 1,

(22)
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Let some of the parameters wk be set to 0, yieldingexp(−
∑
k qkwk) ≤

∑
k qk exp(−wk) + (1−

∑
k qk),

if
∑
k qk ≤ 1,

(23)

Commence by expressing the symmetric likelihood function as:

p(y|X,w) =
∏
i

1

1 + exp(−yiwTxi)
, (24)

Upon applying the first lemma (20) at the current parameter values w0, it
follows that the log-likelihood function is bounded by

p(y|X,w) = −
∑
i

log(1 + exp(−yiwTxi)),

≥ log p(y|X,w0) +
∑
i

(
1− 1 + exp(−yiw)Txi

1 + exp(−yiwT
0 xi)

)
,

= log p(y|X,w0) +
∑
i

(1− σ(yiw
T
0 xi))(1− exp(−yi(w −w0)Txi)),

(25)

where σ(m) = 1
1+exp(−m) .

Maximizing this bound over the parameter vector w remains a formidable
task. Consequently, we employ the second lemma (21) by setting qk = |xik|/s,
yielding:

g(wk) = −
∑
i

(1− σ(yiw
T
0 xi))

∑
k

|xik|
x

exp(−yisign(xik)s(wk − w0k)), (26)

dg(wk)

dwk
=
∑
i

(1− σ(yiw
T
0 xi))yixik exp(−yisign(xik)s(wk − w0k)) = 0, (27)

exp(2s(wk − w0k)) =

∑
i|yixik>0

(1− σ(yiw
T
0 xi))|xik|∑

i|yixik<0
(1− σ(yiwT

0 xi))|xik|
, (28)

wk = w0k +
1

2s
log

∑
i|yixik>0

(1− σ(yiw
T
0 xi))|xik|∑

i|yixik<0
(1− σ(yiwT

0 xi))|xik|
, (29)

Hence, the iterative scaling update is given by

ŵnewk = ŵoldk +
1

2s
log

∑
i|yixik>0

(1− σ(yi

(
ŵold

)T
xi))|xik|∑

i|yixik<0
(1− σ(yi

(
ŵold

)T
xi))|xik|

, (30)

The implementation algorithm of the iterative scaling method is summarized
in Algorithm 1. The cost of this algorithm is O(nd) per iteration.
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Algorithm 1 Iterative Scaling Approach Version 1.

Input: ŵ(0), X, y
Initialisation: Set t = 0

1: repeat
2: s = maxi

∑
k |xik|;

3: ŵ
(t+1)
k = ŵ

(t)
k + 1

2s log

∑
i|yixik>0

(1−σ(yi(ŵ(t))
T
xi))|xik|∑

i|yixik<0
(1−σ(yi(ŵ(t))

T
xi))|xik|

;

4: t = t+ 1;
5: until convergence

Output: ŵ∗

5.1.2 Version 2

The parameter w is derived by maximizing the log-likelihood function l(w) or
minimizing minw−l(w), expressed by the equation:

f(w) = −l(w) =

n∑
i=1

(log(1 + ew
Txi)−wTxiyi), (31)

To construct a surrogate for f(w), we initiate by establishing an upper bound

g. Initially, we provide an upper bound for log(1 + ex
Tw) as follows:

log(1 + ex
T
i w) = log(1 + ex

T
i w

′

ex
T
i (w−w

′
)),

= log(1 + ex
T
i w

′

) + log

(
1

1 + ex
T
i w

′ +
ex

T
i w

′

1 + ex
T
i w

′ e
xTi (w−w

′
)

)
,

= log(1 + ex
T
i w

′

) + log(1− pi(w
′
)) + pi(w

′
)ex

T
i (w−w

′
),

= log(1 + ex
T
i w

′

) + log(1 + p(w
′
))(ew

T
i (w−w

′
) − 1),

≤ log(1 + ex
T
i w

′

+ pi(w
′
))(ex

T
i (w−w

′
) − 1),

= log(1 + ex
T
i w

′

)− pi(w
′
) + pi(w

′
)ex

T
i (w−w

′
),

(32)

where pi(w) = exi
Tw

1+exiTw
. It is important to note that this bound lacks a closed-

form solution, necessitating further bounding. To achieve this, we proceed to

bound ex
T
i (w−w

′
). Define s(xi) =

∑
k |xik| and let S = maxi s(xi). Additionally,

denote xik = |xik|sgn(xik), and qik = |xik|
S . It is worth noting that qik ≥ 0 and∑

k qik ≤ 1. As a result, we obtain:
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ex
T
i (w−w

′
) = e

∑
k xik(w−w

′
),

= e
∑
k |xik|sgn(xik)(wk−w

′
k),

= e
∑
k

|xik|
S Ssgn(xik)(wk−w

′
k),

= e
∑
k qikSsgn(xik)(wk−w

′
k) + (1−

∑
k

qik)0,

≤
∑
k

qike
s(x)sgn(xk)(wk−w

′
k) + (1−

∑
k

qike
0),

=
∑
k

|xik|
S

eSsgn(xik)(wk−w
′
k) + 1−

∑
k

qik,

(33)

The inequality in the above step relies on the convexity of the exponential
function, or equivalently, Jensen’s inequality. Specifically, it can be expressed
as e

∑
i αiti ≤ αieti , where the probabilities αi adhere to non-negativity (αi ≥ 0

) and the sum-to-one constraint (
∑
i αi = 1).

log(1 + ex
T
i w) ≤ const+ pi(w

′
)
∑
k

|xik|
S

eSsgn(xik)(wk−w
′
k), (34)

where const represents a term that is independent of w. In conclusion, we can
constrain f(w) as follows:

f(w) ≤ g(w,w
′
), (35)

and

g(w,w
′
) = const

′
+

n∑
i=1

d∑
k=1

(
pi(w

′
)
|xik|
S

eSsgn(xik)(wk−w
′
k) −wkxikyi

)
, (36)

Drawing from the inequalities employed in constructing the surrogate func-
tion, it is evident that f(w) ≤ g(w,w

′
). Furthermore, by setting w = w

′
,

we can confirm that the two inequalities hold with equality, implying f(w
′
) =

g(w
′
,w

′
). Consequently, g fulfills the criteria for a surrogate function. The re-

sulting surrogate g(w,w
′
) is separable in the elements of the vector w, enabling

us to address d distinct minimization problems (one for each element of w) to
minimize g. The outcome of the minimization concerning wk is expressed as:

wt+1
k = w

(t)
k +

1

S
log

(
Bk +

√
B2
k + 4A1kA2k

2A1k

)
, (37)
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where 
A1k = 1

2

∑
i(|xik|+ xik)pi(w

′
),

A2k = 1
2

∑
i(|xik| − xik)pi(w

′
),

Bj =
∑
i xikyi,

(38)

The convergence of the algorithm occurs when the argument of the logarithm
equals 1, specifically when Bk = A1k−A2k, i.e., when

∑
i xikpi(w

′
) =

∑
i xikyi.

Remarkably, this aligns with the maximum likelihood equation derived by equat-
ing the derivative of the log-likelihood to zero. The algorithm is succinctly
outlined in Algorithm 2.

Hence, the iterative scaling update is given by

ŵnewk = ŵoldk +
1

S
log

(
Bk +

√
B2
k + 4A1kA2k

2A1k

)
, (39)

where 
A1k = 1

2

∑
i(|xik|+ xik)pi(ŵ

old),

A2k = 1
2

∑
i(|xik| − xik)pi(ŵ

old),

Bj =
∑
i xikyi,

(40)

and pi(ŵ
old) = exi

T ŵold

1+exiT ŵold

Algorithm 2 Iterative Scaling Approach Version 2.

Input: ŵ(0), X, y
Initialisation: Set t = 0

1: repeat
2: S = maxi

∑
k |xik|;

3: pi(ŵ
(t)) = exi

T ŵ(t)

1+exiT ŵ(t)

4: A1k = 1
2

∑
i(|xik|+ xik)pi(ŵ

(t));

5: A2k = 1
2

∑
i(|xik| − xik)pi(ŵ

(t));
6: Bj =

∑
i xikyi;

7: ŵt+1
k = ŵ

(t)
k + 1

S log

(
Bk+
√
B2
k+4A1kA2k

2A1k

)
;

8: t = t+ 1;
9: until convergence

Output: ŵ∗
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5.2 Gradient descent approach

We can use the gradient descent approach to find the ML estimation of w. The
gradient descent update is given by

ŵnew = ŵold + η∇wl(ŵ
old),

= ŵold + η

n∑
i=1

(
yi −

eŵ
oldT xi

1 + eŵ
oldT xi

)
xi,

(41)

where η is the step size.
The gradient descent algorithm, described in Algorithm 3, is guaranteed to

converge to the global maximum of the log-likelihood function if η is sufficiently
small. However, the gradient descent algorithm is computationally expensive
since it requires the computation of the gradient at each iteration.

Algorithm 3 Gradient Descent Approach.

Input: ŵ(0), η, X, y
Initialisation: Set t = 0

1: repeat

2: ŵ(t+1) = ŵ(t) + η∇wl(ŵ
(t)) = ŵ(t) + η

∑n
i=1

(
yi − e(ŵ(t))

T
xi

1+e(ŵ(t))
T

xi

)
xi;

3: t = t+ 1;
4: until convergence

Output: ŵ∗

6 Jeffreys Prior for MAP Estimation

In MAP estimation, the model parameters are determined by solving:

ŵMAP = arg maxw (l(w) + log(p(w))) , (42)

Our objective is to address the maximization problem in (42) specifically in
the context of Jeffreys prior. According to Jeffreys prior, the probability of the
prior is proportional to the square root of the determinant of the FIM:

p(w) ∝
√

det(FIM), (43)

The determinant of FIM is given by

det(FIM) = det(nσ2
[
(α2 − α0)u1u

T
1 + α0I

]
) = (nσ2α0)d det

(
α2 − α0

α0
u1u

T
1 + I

)
,

(44)

Lemma 6.1
det(Im + uvT ) = 1 + vTu. (45)

where u, v ∈ Rm
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Algorithm 4 Gradient Ascent Approach.

Input: ŵ(0), η, X, y
Initialisation: Set t = 0

1: repeat

2:
∂ log p(X,y|ŵ(t))

∂ŵ(t) =
∑n
i=1

(
yixi − e(ŵ(t))

T
xixi

1+e(ŵ(t))
T

xi

)
+

1
2

[
(d− 1) ∂α0

∂‖ŵ(t)‖ + ∂α2

∂‖ŵ(t)‖

]
ŵ(t)

‖ŵ(t)‖ ;

where ∂αk
∂‖ŵ(t)‖ = σE

[
zk+1(p− 3p2 + 2p3)

]
and p = e‖ŵ(t)‖σz

1+e‖ŵ(t)‖σz with z ∼

N (0, 1)

3: ŵ(t+1) = ŵ(t) + η ∂ log p(X,y|ŵ(t))

∂ŵ(t)

4: t = t+ 1;
5: until convergence

Output: ŵ∗

Apply the Lemma (45) to the determinant of FIM yields

det(FIM) = (nσ2α0)d
(

1 +
α2 − α0

α0
uT1 u1

)
= (nσ2α0)d

(
1 +

α2 − α0

α0

)
= (nσ2)dαd−10 α2,

(46)

The optimization problem (42) is equivalent to the following optimization
problem:

ŵMAP = arg max
w

l(w) + log(

√
(nσ2)dαd−10 α2),

= arg max
w

const+ l(w) +
1

2
(d− 1) log(α0) +

1

2
log(α2),

(47)

We adopt a gradient ascent approach to solve the optimization problem

ŵnew = ŵold + η
∂ log p(X,y|w)

∂w
, (48)

where η is the step size. The gradient of the objective function is given by

∂ log p(X,y|w)

∂w
=
∂l(w)

w
+
∂ log p(w)

∂w
, (49)

∂l(w)

w
=

n∑
i=1

(
yixi −

ew
Txixi

1 + ewTxi

)
, (50)

∂ log p(w)

∂w
=

1

2

[
(d− 1)

∂α0

∂ ‖w‖
+

∂α2

∂ ‖w‖

]
w

‖w‖
, (51)
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∂αk
∂ ‖w‖

= σE
[
zk+1(p− 3p2 + 2p3)

]
, (52)

where p = e‖w‖σz

1+e‖w‖σz and z ∼ N (0, 1).

7 Experimental Results

In this section, we present numerical simulations to assess our expression for
the CRLB, comparing it with the MSE of ML estimators under various condi-
tions, including no regularization, l1-regularization, l2-regularization, and iter-
ative scaling approach over a range of parameter values.

General settings: We employ Monte Carlo simulations to compute the
MSE of all considered estimators. For each of the 200 Monte Carlo runs, we
generate n feature vectors x ∼ N(0, σ2I) with σ2 = 1.

7.1 CRLB evaluation

For the assessment of the CRLB, we systematically vary the values of n and |w|
and subsequently compare the CRLB with the MSE of Maximum Likelihood
(ML) estimators.

7.1.1 CRLB and MSE as a function of the data size n

101 102 103

n

10-2

10-1

100

101

C
R

L
B

 &
 M

S
E

CRLB

MSE w/o regularization

MSE w/ L
1

MSE w/ L
2

Iterative scaling version 1

Iterative scaling version 2

Figure 1: CRLB and MSE of ML estimations as a function of n for w =
[1, 1]T

√
2.

To investigate the influence of the number of data points, n, on both the
Cramér-Rao Lower Bound (CRLB) and the Mean Squared Error (MSE), we
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CRLB, 
2
 = 1
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2
 = 1

MSE w/ L1, 
2
 = 1

CRLB, 
2
 = 15

MSE w/o regularization, 
2
 = 15

MSE w/ L1, 
2
 = 15

Figure 2: CRLB and MSE of ML estimations (no regularization, l1-
regularization) as a function of n with d = 2 for different values of σ2.

vary n across the following values: [10, 20, 50, 80, 200, 300, 500, 700, 1000],
while fixing w = [1, 1]T

√
2.

Figure 1 illustrates a decreasing trend for both the CRLB and the MSE with
respect to n. Initially, with a small value of n, there is a substantial gap between
the CRLB and MSE. However, as n increases, this gap gradually diminishes.
For sufficiently large values of n, the difference between the CRLB and MSE
becomes negligible. This observation aligns with the asymptotic property of the
CRLB. As anticipated, the ML estimator demonstrates asymptotic efficiency.
We also observe that the MSE of the ML estimator without regularization, l1 and
l2 regularization are much better than the MSE of iterative scaling approach.

Figure 2 presents the CRLB and MSE as functions of n for various values
of σ2. It is observed that as σ2 rises from 1 to 15 (resulting in an increase in
Signal-to-Noise Ratio (SNR) since x ∼ N(0, σ2I)), both the CRLB and MSE
decrease. Additionally, the gap between the CRLB and MSE slightly widens
with the increase in σ2.

7.1.2 CRLB and MSE as a function of the norm of ‖ w ‖

In this context, we systematically vary the norm of the vector w in an in-
cremental manner, considering the following values: [0.01, 0.02, 0.05, 0.1, 0.2,
0.5, 1, 2, 5, 10, 15, 20]. Additionally, we explore different data sizes with
n ∈ [50, 100, 1000]. The objective of this experimental setup is to examine the
impact of the classifier’s sharpness, as denoted by ||w||, on the MSE of the ML
estimator.

Figure 3 illustrates the MSE of the ML estimator (without regularization)
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Figure 3: CRLB and MSE as a function of ‖ w ‖ for n ∈ {50, 100, 1000}.

and the CRLB as functions of ‖ w ‖. It is observed that with an increase in the
value of ‖ w ‖, both the CRLB and MSE exhibit an increase. A comparison
among curves associated with different values of n reveals that as n increases,
the MSE of the ML estimator decreases, indicating increased efficiency. Fur-
thermore, the MSE of the ML estimator consistently exceeds the CRLB, and the
gap between them widens with the growing ‖ w ‖. As ‖ w ‖ increases, the ML
estimator becomes less efficient. In general, achieving accurate parameter esti-
mates for the Logistic Regression (LR) model when ‖ w ‖ is large necessitates
a substantial increase in the number of data points n.

7.2 CRLB and MSE of ML estimation

In this section, we assess the CRLB and MSE of ML estimations under different
regularization approaches, including no regularization, l1-regularization, and l2-
regularization. The evaluation is conducted under the same conditions as in
Section 7.1.2, except for the variation in n within the range [50, 1000]. For l1
regularization, we introduce λ ‖ w ‖1 to l(w) in (3), and for l2 regularization,
we add λ ‖ w ‖22.

Figures 4a and 4b depict the CRLB and MSE of ML estimations under
various regularization approaches for n = 50 and n = 1000, respectively. For a
smaller data size, n = 50, the MSE of the ML estimator exhibits a rapid increase
with ‖ w ‖, resulting in a substantial gap with the CRLB. Conversely, with a
larger data size, n = 1000, the gap between the MSE and CRLB is significantly
smaller.
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Figure 4: CRLB and MSE of ML estimations as a function of ‖ w ‖ with
d = 2 for (a) n = 50 and (b) n = 1000.
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